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Helminths are masterful immunoregulators. A characteristic feature of helminth infection is a Th2-
dominated immune response, but stimulation of immunoregulatory cell populations, such as regulatory T
cells and alternatively activated macrophages, is equally common. Typically, Th1/17 immunity is blocked
and productive effector responses are muted, allowing survival of the parasite in a “modified Th2” environ-
ment. Drug treatment to clear the worms reverses the immunoregulatory effects, indicating that a state of
active suppression is maintained by the parasite. Hence, research has focussed on “excretory–secretory”
products released by live parasites, which can interfere with every aspect of host immunity from ini-
ntioxidant
ystatin
ytokine
elminth

mmune evasion

tial recognition to end-stage effector mechanisms. In this review, we survey our knowledge of helminth
secreted molecules, and summarise current understanding of the growing number of individual helminth
mediators that have been shown to target key receptors or pathways in the mammalian immune system.
ectin
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. Immune modulation during helminth infection

The capacity of helminth parasites to modulate the immune sys-
em underpins their longevity in the mammalian host [1,2]. There is
onsequently intense interest in understanding the molecular basis
f helminth immunomodulation [3,4]. The remarkable range of par-
site life histories, transmission strategies, and physiological niches,
s reflected in the variety of immunomodulatory activities observed
cross the three taxonomic categories (nematodes, cestodes, and
rematodes) that comprise the helminth grouping [5–9]. How-
ver, general patterns have emerged, revealing the ways in which
elminths can dampen host immunity, and how immunopathol-
gy may result from a dysregulated response to infection [10]. For
nstance, both schistosome (for example, Schistosoma mansoni) and
larial (e.g. Brugia malayi) infections result in antigen-specific unre-
ponsiveness in the peripheral T cell populations of heavily infected
atients [11–13]. Moreover, helminth infection is associated with
iminished reactivity to bystander allergens and autoantigens, both

n model systems [8,14] and in human studies [15,16].
A key feature is that helminth immune suppression is dependent

n live parasites, as shown in vivo by the recovery of responsiveness
ollowing curative chemotherapy [17], as well as by the regulatory
ffects of live parasites in vitro [18]. Hence, there is a particular
ocus on mediators released by live parasites and the analysis of
ow these products, in total and as individual components, may be
esponsible for the noted ability of helminths to redirect the host
mmune system.

. Helminth secreted products: the rationale

Mechanistically, parasite modulation of the immune system is
ost likely to be effected through the release of soluble media-

ors which ligate, degrade or otherwise interact with host immune
ells and molecules [19]. Modulation may also occur through the
elease (and death of some proportion) of transmission stages such
s the eggs of schistosomes or the newborn microfilarial larvae of
larial parasites. In tissue-dwelling parasites, important engage-
ents also occur at the surface of the helminth itself. Much of

he earlier literature on immunological effects of helminth prod-
cts depended on crude extracts (such as SEA schistosome egg
ntigen), although the degree to which the host is exposed to con-
tituent molecules was uncertain. While both somatically derived
nd secreted products are known to have immunological activity
4], the secreted helminth modulators are those most likely to be
hysiological actors at the interface between live parasites and the
ost, and these are the subject of this review.

“Excretory/secretory” (ES) is inevitably a working definition,
ith an imprecise line between products actively exported through

ecretory pathways and those which may diffuse or leak from the
arasite soma. In vivo, “secreted” antigens will include digestive
nzymes emanating from the intestine of adult worms, as well as
terine contents which female worms release along with transmis-
ion stage eggs or larvae. However, parasites may well have adapted
uch “secretions” to fulfill a new role in the host, once they are
eleased from their primary locale within the worm. Hence, it is
ational to analyse all ES products without prejudice as to their
hysiological origin, and subject them to a full range of biochemical,

mmunological and proteomic analyses.
Biochemical analyses have primarily concerned enzymatic

ctivities in helminth ES, such as the proteases ranging in activity

rom parasite invasion [20] to degradation of host chemokines [21].

here enzymes (also including antioxidants, acetylcholinesterases
nd platelet activating factor hydrolase) act in an immunological
ontext, these are detailed further in Section 4.7 below. Immunolog-
cal assays of ES have included the induction of Th2 responsiveness,
ical Parasitology 167 (2009) 1–11

leading in the case of S. mansoni to the products described in Section
4.1. An alternative, transcriptomic-based, avenue led to identifying
ES products which are encoded by abundant mRNA species (e.g.
filarial ALT proteins [22], see Section 4.9 below). More recently,
with the development of helminth genomics, systematic proteomic
analyses of many major helminth ES products have become possible
(Table 1). These studies revealed a common set of proteins secreted
by helminths, including proteases, protease inhibitors, venom aller-
gen homologues, glycolytic enzymes and lectins. However, the
relative abundance of each of these varied between different para-
sites and individual life cycle stage, reflecting the range of sites of
parasitism.

Available parasitic helminth genomes encode >10,000 genes
[23], a figure supported by independent transcriptomic analyses
[24,25]. Bioinformatic approaches to predict secreted proteins on
the basis of signal peptide sequences [26,27] have some merit, but
in a metazoan not all secretory proteins will be exported from the
organism, and proteomic data show a surprisingly large proportion
of ES proteins are not encoded with a signal peptide [28–30]; hence
empirical proteomic studies remain essential. Although ES prod-
ucts will only represent a fraction of the full genomic complement,
determining the function of several hundred secreted proteins is a
formidable task involving cloning and recombinant expression, as
well as the production of neutralising antibodies.

Several other caveats about our current technologies should be
borne in mind. While proteomic analysis can reveal the composition
of helminth secretions and the relative abundance of each protein,
it gives no information on the non-protein components (e.g. car-
bohydrates [31,32]), and post-translational modifications are not
easily ascertained. Secondly, not all secreted products are macro-
molecules: filarial parasites secrete prostacyclin and prostaglandin
for example [33], and schistosome eggs release free glycans [34].
Thirdly, while proteomic techniques allow unbiased identification
of the more abundant ES proteins (Fig. 1), they may still miss those
expressed at low, but bioactive, levels [29,30,35]. Even with these
reservations in mind, however, it is clear that a rich and fascinating
set of parasite modulators have already been discovered.

In the following sections, we briefly summarise in Section 3
the molecular and immunological information available on the
secreted products from each major helminth species, before dis-
cussing in Section 4 the key individual molecular mediators now
identified from the ES products of these parasites.

3. Functional and molecular analyses of helminth products

3.1. Trematodes: S. mansoni and Fasciola hepatica

Schistosome infections commence when cercariae of this trema-
tode penetrate the vertebrate skin, transforming into schistosomula
larvae in the process. Schistosomulae migrate to the lung, mature
as adults in the vasculature, and produce eggs which exit through
the intestine. Each of these stages is implicated in immune modula-
tion. Larval secretions are also highly immunogenic vaccine targets
as passive immunisation with antisera to ES confers around 50%
protection against challenge infection [36]. The same skin-stage
schistosome ES directs DCs to drive Th2 responses in vivo [37].
This ES contains abundant proteases, including several elastases
that facilitate parasite skin penetration [38], and can cleave host
IgE antibodies [39]. The presence of multiple isoforms of cercar-
ial elastase and a metalloprotease was confirmed by proteomics
of cultured parasites [40,41], and by proteomic analysis of human

skin traversed by invading cercariae [42]. Additionally, skin-stage
parasites were shown to secrete a number of glycolytic enzymes,
such as triose phosphate isomerase, GADPH, aldolase and enolase,
as well as several homologues of the venom allergen-like (VAL)
family, as discussed in Section 4.8. Cercarial ES also contains the



J.P. Hewitson et al. / Molecular & Biochemical Parasitology 167 (2009) 1–11 3

Table 1
Proteomic analyses of helminth secretions.

Species Stage/niche Proteins identified Prominent proteins Reference Notes

Ancylostoma caninum Adult/duodenum 105 ASPs (VALs) [70] Over 30 different VAL
homologues present

C-type lectins and
galectins, proteases

Brugia malayi Adult, male and
female/lymphatics

80 Triose phosphate
isomerase

[29,30] GlcNAcT, but not LAP,
bears PC

193 Galectin, GlcNAcT
LAP, NPA, MIF-1

Microfilaria/blood 76 Serpin-2 [30]
PEBP, Bm-R1

Haemonchus contortus Adult/abomosum 107 VALs, proteases, gut
proteins

[78] Multiple VALs

Heligmosomoides polygyrus Adult/duodenum 44 VALs, proteases, NPA,
acetylcholinesterase

Harcus
unpublisheda

Multiple VALs

Nippostrongylus brasiliensis Adult/duodenum 3 VALs, globin Harcus
unpublisheda

Ostertagia ostertagi Adult/abomosum 2 VALs [80]
Schistosoma mansoni Larva

(schistosomula)/skin
and lung

16 Cercarial elastase [40-42]

82 Metalloproteinase
VALs, Sm16

Adult, gut
contents/blood

8 Antioxidants,
cystatin

[167] Gut contents likely to
be released as “ES”

FABP, immunophilin
Egg/GI tract 188 IPSE (alpha-1),

omega-1
[28]

VALs, aldolase,
enolase

Teladorsagia circumcincta Larva (L3/L4) and
adult/abomosum

15 larval VALs, proteases, TPX [81]

13 adult [168]
Toxocara canis Larva (L2)/tissues 8 Mucins, C-type

lectins, PEBP
[88]

Harcus
unpublisheda

Trichinella spiralis Muscle-stage (L1) larva 43 Cystatin, 5′

nucleotidase
[97]

Galectin, proteases
Stages or species not parasitic to vertebrates
Fasciola hepatica Mollusc-dwelling larva 8 Antioxidants (SOD,

TRX)
[47]

Meloidogyne incognita Plant parasitic 486 Heat shock proteins [51] Interesting overlap
with B. malayi ES

Glycolytic enzymes
Schistosoma mansoni Sporocyst (snail

dwelling)
7 Antioxidants (SOD,

GST)
[169]

Glycolytic enzymes
(aldolase, enolase,
triose phosphate
isomerase)

Abbreviations: ASP, ancylostoma secreted protein; FABP, fatty acid binding protein; GlcNAcT, N-acetylglucosaminyltransferas; GST, glutathione-S-transferase; IPSE, IL-4 inducing
p tion i
c tase;
s

ls, R.M
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rinciple of schistosome eggs; LAP, leucyl aminopeptidase; MIF, macrophage migra
holine; PEBP, phosphatidylethanolamine binding protein; SOD, superoxide dismu
ecreted protein-like proteins; BmR1 and Sm16 are non-acronymic designations.

a Harcus, Y., Hewitson, J., Curwen, R., Dowie, A., Ashton, P., Wilson, R.A. and Maize

mmunomodulator Sm16 that can inhibit toll-like receptor sig-
alling in monocytes [43].

Completion of the schistosome life cycle requires that eggs tran-
it from the mesenteric veins, through the intestinal mucosa, into
he lumen of the intestine, in a manner dependent on the inflam-

atory response of the host. Proteomic analysis of egg ES reveals
wo abundant proteins, alpha-1 (since renamed IPSE, IL-4-inducing
rinciple of schistosome eggs) and a ribonuclease omega-1 [28,44]
see Section 4.1). Glycolytic enzymes (particularly aldolase and
nolase) are again well represented in the secretions, as are VAL

omologues.

The trematode liver fluke F. hepatica releases an extensive
eries of cathepsin L thiol proteases, which can induce significant
rotection in vaccine form [45]. Adult flukes also secrete thiore-
oxin peroxidase, which stimulates the alternative activation of
nhibitory factor homologue; NPA, nematode polyprotein allergen; PC, phosphoryl-
TPX, thioredoxin peroxidase; TRX, thioredoxin; VAL, venom allergen/Ancylostoma

., manuscript in preparation.

macrophages both in vitro and in vivo [46]. A recent proteomic
analysis of larval F. hepatica has identified additional antioxidant
enzymes as prominent ES products [47].

3.2. Filarial nematodes: B. malayi and Acanthocheilonema viteae

The immunomodulatory potential of secretions of adult Brugia
(BES) were noted some years ago, when BES treatment of infected
dogs resulted in the loss of antigen-driven lymphocyte proliferation
[48]. Further, in mice, BES injection generated suppressive alterna-

tively activated macrophages [49]. Together these studies show that
Brugia secretions mimic at least some of the immunomodulatory
effects of actual infection.

The secretomes of adult and microfilarial stages of B.
malayi have recently been analysed [29,30], matching data
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ig. 1. Helminth ES proteins: an example of the complexity of secreted proteins, fro
el, Coomassie Blue stained, showing selective secretion compared to whole somati
minopeptidase (LAP, the homologue of ES-62), galectin, triose phosphate isomerase
B) Two-dimensional, silver stained gel, with the positions of the same proteins ind

o the recently published genome [23]. Abundant proteins
ecreted by adult parasites include the cytokine homologue Bm-
IF-1 [50], a leucyl aminopeptidase, the PC-bearing protein
-acetylglucosaminyltransferase, and a Brugia galectin Bm-GAL-1

29]. Surprisingly, the most abundant protein released by adult par-
sites, highly enriched compared to worm homogenate, was the
lycolytic enzyme triose phosphate isomerase (TPI). TPI is also pref-
rentially secreted by the plant nematode Meloidogyne incognita
51], and its role may not therefore be specific to the mammalian
mmune system. Experimental testing of TPI and the other major
S products are now under way in our laboratory.

B. malayi microfilariae secrete qualitatively and quantitatively
ifferent proteins to adult parasites, likely reflecting their dif-
erent location within the host [30]. Abundant proteins include
he diagnostic antigen R1 [52], and a serpin (serine protease
nhibitor, SPN-2; [53]). Both adults and microfilariae release phos-
hatidylethanolamine binding protein (homologous to Onchocerca
olvulus Ov-16 and Toxocara canis secreted TES-26 [54]). Secre-
ions from the mosquito-borne infective larval (L3) stage are more
ifficult to analyse due to limitations on material, although it

s known from biochemical studies that a novel protein family
abundant novel transcript, ALT) is released from glandular stock-
iles, while other products include cysteine protease inhibitors
nd a homologue of VAL (B Gregory and J Murray, unpublished
bservations).

Rodent models for filariasis include A. viteae, in which adult
orms can be recovered from the peritoneal cavity of gerbils. Adults

ecrete a single predominant molecule, ES-62, a leucyl aminopep-
idase carrying multiple phosphorylcholine (PC) sidechains [55], as
iscussed in Section 4.2 below.

.3. Rodent intestinal nematodes: Nippostrongylus brasiliensis
nd Heligmosomoides polygyrus

N. brasiliensis is a widely used model of nematode infection of

odents characterised by robust Th2 differentiation and parasite
learance within a week [56]. In vivo administration of N. brasilien-
is adult ES (NES), directly [57] or through NES-pulsed dendritic
ells (DCs) [58], results in strong Th2 responses. NES also induces
lternative activation of macrophages [49]. Notably, NES results in
ult B. malayi [29], highlighting products discussed in the text. (A) One-dimensional
ct, indicating the migration of N-acetylglucosaminyltransferase (GlcNaTase), leucyl
and B. malayi homologue of macrophage migration inhibitory factor-1 (Bm-MIF-1).
.

strong IL-4 production, even in the presence of Th1/Th17-inducing
complete Freund’s adjuvant, indicating a dominant Th2-inducing
component which is heat- and protease-labile [57,58], but is not
itself a protease. As well as driving Th2 responses in vivo, NES
can also regulate pro-inflammatory Th1 responses, inhibiting both
mitogen-dependent interferon-� production by naïve mesenteric
lymph node cells [59] and LPS-induced IL-12p70 production by
DC [58]. Notably, NES under the same conditions does not reduce
IL-6 production, and heat-inactivated NES has no inhibitory prop-
erties, indicating that a selective and heat-sensitive pathway is in
play. Blocking IL-12p70 responsiveness is a common property of
many helminth ES products, and may represent a shared strategy
to forestall Th1 responses [10].

Surprisingly, despite acting as a Th2-inducing adjuvant, NES can
also inhibit Th2-mediated pathology. Both N. brasiliensis infection
[60] and NES alone can inhibit allergen-induced lung inflammation
[61]. In vivo studies showed that ES from N. brasiliensis L3 larvae (L-
NES) inhibited LPS-dependent neutrophil recruitment to the lungs
[62]. Despite the protective effects of NES against lung inflamma-
tion, L-NES is intrinsically allergenic [63], suggesting that different
components may be acting in opposing manners over the longer
term. Currently, few individual components of NES have been iden-
tified (for example, at least two VAL homologues, Table 1), but as the
genome sequencing of this parasite is undertaken, this deficiency
should soon be addressed.

H. polygyrus is closely related to N. brasiliensis but is able to estab-
lish chronic infections in mice. Immunosuppressive properties of
H. polygyrus ES (HES) were first shown by Pritchard and colleagues
on KLH-specific bystander responses in vitro [64]. More recently,
a single HES fraction was reported to inhibit T cell proliferation
and macrophage nitric oxide production [65]. HES treatment of DCs
ablates IL-12p70 responsiveness to TLR agonists such as LPS [66].
Furthermore, HES-exposed DCs can induce differentiation of IL-10-
producing CD4+ Tregs, which suppress bystander T cell proliferation
[66]. One candidate immunomodulator is calreticulin, secreted by

tissue-phase intestinal larvae, which can induce Th2 differentia-
tion [67]. We have also established that at least six homologues of
VAL are secreted by the adult worm (Table 1), as well as a TGF-�-
like ligand which induces functional, suppressive Tregs from naive
precursors (see Section 4.4 below).
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.4. Human and canine hookworms: Ancylostoma caninum and
ecator americanus

Hookworm research has focussed on both the infective L3 stage,
s a vaccine target, and on the blood-feeding adult worms. A. can-
num L3 release the VAL homologue Ancylostoma secreted protein
ASP) [68], and a similar antigen from the human hookworm N.
mericanus is now in a vaccine trial [69]. ASPs are also abundant
n adult A. caninum ES [70], together with proteases which play

role as anti-coagulants and in digestion of blood contents [71].
. caninum adult-secreted mediators include a fatty acid/retinol
inding protein [72], and a tissue inhibitor of metalloprotease
73] while an adult N. americanus protein binds to human NK
ells, resulting in IFN-� production [74]. Finally, A. caninum ES can
educe TNBS-induced intestinal inflammation, demonstrating its
mmunomodulatory potential [75].

.5. Trichostrongyles of ruminants: Haemonchus contortus and
elated species

H. contortus is a trichostrongyle nematode and one of the most
revalent helminth parasites, distributed in ruminant livestock
orldwide. Vaccination of sheep with H. contortus adult ES pro-

eins induces significant protection (>70%) against challenge [76];
he major antigens are Hc15, and Hc24, the latter being a VAL homo-
ogue [77]. Proteomic analysis of the ES [78] indicates both Hc24
nd a further VAL homologue Hc40 are expressed as numerous iso-
orms; galectins (GALs) are also prominent. Other intestinal nema-
odes of livestock, very closely related to H. contortus, secrete a simi-
ar GAL/VAL-dominated suite of ES proteins including Cooperia spp.
79], Ostertagia ostertagi [80], and Teladorsagia circumcincta [81].

.6. Toxocara canis and Trichinella spiralis

T. canis is a parasite which, in its larval form, can infect a wide
ariety of hosts, causing visceral larva migrans in humans. Larval
ES is type-2 stimulating [82] and comprises a relatively simple set
f glycoproteins which is dominated by three gene families [83].
ost ES proteins match a small transcriptomic dataset [84], reflect-

ng the secretion of a small number of relatively abundant proteins,
ncluding two C-type lectins [85,86] and three mucins [87,88]. The
atter carry abundant O-linked glycans, similar in structure to mam-

alian blood group H [89], which are the target of dominant IgM
ntibodies in infected hosts [90].

T. spiralis (the pork worm) can also infect a broad host range, and
S antigens from this parasite were among the first to be charac-
erised by biosynthetic labelling [91]. An intriguing set of functional
roperties have been discovered in ES, including the only known
ecreted protein kinase [92], a 5′-nucleotidase [93], macrophage
igration inhibitory factor [94], and a prosaposin [95]. A T. spi-

alis nucleoside diphosphate kinase is secreted [96] and a similar
roduct reported in ES from other nematodes [78,81]. Detailed pro-
eomic analyses of the muscle-stage (infective) larvae have been
ndertaken [97,98].

.7. Taenia and Echinococcus

Larval forms of cestode Taeniid tapeworms cause cystercerco-
is in humans; a model of this disease is T. crassiceps in mice, in
hich larval parasites in the peritoneal cavity can multiply asex-
ally, accompanied by suppression of Th1 responses [99]. Larval

S products suppress in vitro T cell responses [100], although indi-
idual components of the secreted material were not identified.
dditionally, larval ES contains a functional mimic of host IFN-�,
ut the role of this protein in immunoregulation is unclear [101].
ydatid cysts, surrounding metacestodes of Echinococcus granulo-
ical Parasitology 167 (2009) 1–11 5

sus, are considered to comprise both host proteins and parasite
secretions: prominent among the latter are the antigen B family
which is implicated in Th2 induction and is reported to inhibit
neutrophil migration [102].

4. Immunomodulatory molecules from helminths

4.1. Alpha to omega of schistosome Th2 induction

The schistosome-secreted proteins alpha-1 and omega-1 pro-
mote Th2 differentiation. Alpha-1, released by schistosome eggs
[28], induces IL-4 release and degranulation by human and mouse
basophils, thereby initiating a Th2 environment [103,104]. Also
named IL-4-inducing principle of schistosome eggs (IPSE), alpha-
1 is a dimer that binds and cross-links surface IgE on basophils,
in an antigen-independent manner. IPSE has also been shown to
function as a chemokine binding protein, which by sequestering
ligands, can prevent chemokine-mediated recruitment of inflam-
matory cells such as neutrophils [105]. Neutralisation of IPSE,
using polyclonal sera, leads to increased egg-induced inflammation,
directly implicating IPSE in the modulation of egg granulomatous
responses. Omega-1 is a ribonuclease abundantly secreted by eggs
[106] which is hypothesised to stimulate the immune response
necessary for egg transit across host tissues, allowing excretion.
Supporting this, recent evidence indicates omega-1 can directly
induce Th2 responses (M. Mohrs, M. Yazdanbakhsh and G. Schramm
personal communication).

4.2. ES-62 and phosphorylcholine inhibition of immune cell
signalling

Phosphorycholine is a small hapten-like moiety present in secre-
tions of many helminths. ES-62 is the leucine aminopeptidase
secreted by A. viteae, which is heavily conjugated with phosphoryl-
choline and represents the dominant ES product of adult worms of
this species [107]. Through PC modifications, ES-62 can inhibit the
proliferation of CD4+ T cells and conventional B2 cells in vivo, and
reduces CD4+ cell IL-4 and IFN-� production [108,109]. Conversely,
ES-62 promotes proliferation and IL-10 production by peritoneal
B1 cells [110]. Antigen-presenting cells are also targeted, as ES-
62 pulsed bone marrow-derived DCs drive Th2 differentiation in
vitro [111], and pre-treatment of DC and macrophages with ES-62
inhibits their ability to produce IL-12p70 in response to LPS [112].
Inhibition of pro-inflammatory Th1 responses occurs as ES-62 inter-
acts with toll-like receptor (TLR) 4 through its PC residues [113], and
in mast cells TLR4 binding results in the sequestration and degra-
dation of intracellular PKCa, thereby inhibiting degranulation and
release of inflammatory mediators [114]. ES-62 also protects mice
against collagen-induced arthritis [115].

Notably, in B. malayi PC is not found on the ES-62
homologue (LAP), but on another secretory protein, N-
acetylglucosaminyltransferase [29]. In the rodent filarial parasite
Litomosoides sigmodontis, the major ES product is modified with
DMAE (dimethylaminoethanol) [116], which contains one less
methyl group than PC, giving rise to suggestions that DMAE may
function immunologically in a manner similar to PC [117].

4.3. Glycans and lipid molecules—connecting with DCs?

Helminth ES preparations are generally rich in glycoproteins and
lipids, leading to many potential interactions with innate pattern-

recognition receptors, such as TLRs and C-type lectins on host DCs.
Blood group-like glycans from T. canis bind the lectin DC-SIGN,
hypothesised to favour immune regulation [90]. Schistosome glyco-
proteins show extensive glycosylation [32], including LewisX motifs
that trigger Th2 responses in vivo through TLR4 ligation [118]. The



6 iochem

c
d
b
[
l
I
t
s
f

4

f
l
m
c
m
r
M
c
g
s
l
t
s
i
p

t
h
[
t
[
i
t
[
i
i
l
a
[

4

l
s
a
a
w
t
t
a
[
d
i
A
h
h
s
i
c
r
a
l

J.P. Hewitson et al. / Molecular & B

onsequences of glycan-dependent stimulation include granuloma
evelopment in vivo [119]. Additionally, macrophage stimulation
y schistosome larval secretions is dependent on carbohydrates
120]. Helminth lipids have also been implicated in immune modu-
ation; schistosome phosphatidylserine (PS) induces DCs to polarise
L-4/IL-10-producing T cells. In contrast, schistosome lyso-PS, con-
aining only a single acyl chain, conditions DCs to induce IL-10
ecreting regulatory T cells, thus swaying the immune system away
rom a protective Th2 response [121].

.4. Cytokine homologues—on the host’s home turf

It is now clear that certain highly conserved cytokine gene
amilies are present in helminths, and that their products can
igate receptors on mammalian immune cells. For example, B.

alayi and A. ceylanicum express homologues of the mammalian
ytokine macrophage migration inhibitory factor (MIF) [122]. Mam-
alian MIF is considered to be pro-inflammatory, playing a key

ole for example in septic shock. Perhaps surprisingly, nematode
IF homologues mimic host MIF by induction of pro-inflammatory

ytokines [50,123,124]. However, we have recently found that Bru-
ia MIF synergises with IL-4 to induce the development of fully
uppressive alternatively activated macrophages in vitro [125], to a
evel beyond that observed for IL-4 alone [126]. One pathway for
his effect may be through the induction by MIF of IL-4R expres-
ion on macrophages [125], thereby amplifying the potency of IL-4
tself. Thus, in a Th2 environment, MIF may prevent the classical,
ro-inflammatory, activation of macrophages.

Worms also express members of the TGF-� and TGF-� recep-
or superfamilies. B. malayi adults secrete TGH-2, a homologue of
ost TGF-� and of the C. elegans developmental protein, DAF-7
35]. Recombinant TGH-2 can bind to the mammalian TGF-� recep-
or, suggesting it may promote the generation of regulatory T cells
127], as has been found for mammalian TGF-�. However, TGH-2
s secreted at very low levels, below the limit of detection for pro-
eomics, and it is unclear whether this is sufficient for bioactivity
29,30]. In contrast, a H. polygyrus TGF-� mimic is able to directly
nduce Foxp3+ expression in activated T cells, implying a key role
n parasite immune avoidance (Grainger et al., submitted for pub-
ication). Parasite TGF-� homologues also have non-immune roles,
nd one such S. mansoni protein is involved in egg development
128].

.5. C-type lectins and galectins—targetting mammalian glycans?

Lectins are carbohydrate binding proteins, and host C-type
ectins and galectins are involved in a variety of immune processes,
uch as antigen uptake and presentation, cell adhesion, apoptosis
nd T cell polarisation [129]. C-type lectins (C-TLs) are particularly
bundant in the secretions of T. canis [85,86] and those of hook-
orms [70]. The biological roles of parasite C-TLs are unclear, but

wo T. canis C-TLs (TES-32 and TES-70) show greater homology
o mammalian proteins such as CD23 (low affinity IgE receptor)
nd macrophage mannose receptor, than to any C. elegans protein
86]. Furthermore, TES-70 is able to bind mammalian carbohy-
rates in a calcium-dependent manner [85] suggesting a role in

mmune evasion by e.g. inhibiting the migration of host cells.
lternatively, parasite C-TLs may bind to and mask worm carbo-
ydrates from host immune cells. Additionally, nematode C-TLs
ave roles unconnected with immune evasion. The acquisition of
ymbiotic bacteria by the marine nematode Laxus oneistus requires

ts secretion of a C-TL [130], while a non-secretory C-TL from A.
eylanicum, specifically expressed by sperm cells, has a putative
ole in nematode reproduction [131]. Secreted galectins are more
pparent in other species such as H. contortus [132] and particu-
arly B. malayi [29]. A recombinant Brugia galectin, Bm-GAL-1, is
ical Parasitology 167 (2009) 1–11

able to bind to host immune cells in a carbohydrate dependent
manner (J.P.H. unpublished observations), but does not share the
eosinophil chemoattractant properties reported for a H. contortus
galectin [133].

4.6. Protease inhibitors—blocking innate cell functions

Two highly expressed sets of protease inhibitors are the cystatins
and the serpins, each with proposed immunomodulatory roles.
Cystatins (cysteine protease inhibitors) from A. viteae, B. malayi, O.
volvulus and N. brasiliensis act as immunomodulators, through at
least two mechanisms [134,135]. Firstly, they inhibit cysteine pro-
teases (cathepsins and aspartyl endopeptidase) required for host
APC antigen processing and presentation, so leading to reduced T
cell priming [136,137]. Secondly, they elicit the immunosuppressive
cytokine IL-10, leading to a reduction in costimulatory molecule
expression by APCs, and the direct inhibition of T cell proliferation
[138]. The immunomodulatory potential of parasite cystatins is also
evident in vivo, in inhibition of both allergic lung inflammation and
colitis, mediated by Tregs and IL-10-producing macrophages [139].

The serpins are serine protease inhibitors [140], and one mem-
ber of this family, SPN-2, is the major mRNA and secreted protein
product [30,141] of B. malayi microfilariae. The function of SPN-2
is disputed; in collaboration with a leading serpin laboratory we
reported specific inhibition of the neutrophil proteinases cathepsin
G and neutrophil elastase, and no activity against a range of other
enzymes such as pancreatic chymotrypsin and coagulation factors
[53]. However, an independent group reported that recombinant
protein was devoid of inhibitory activity [142]. Irrespective of direct
anti-enzymatic activity, SPN-2 stands out as unusual because of its
ability to stimulate a Th1 response in mice, corresponding to the
ability of live microfilariae to drive this type of immune response
[141].

4.7. Antioxidants and acetylcholinesterases

Production of reactive oxygen species (oxygen radicals, super-
oxide, and hydrogen peroxide) by phagocytes is a primary pathway
of immune attack against parasites. Correspondingly, most par-
asites express high levels of antioxidants, including superoxide
dismutases (SODs), catalases, glutathione and thioredoxin peroxi-
dases, and peroxiredoxins. Secreted helminth antioxidant enzymes
include B. malayi glutathione peroxidase [29] and SOD [143], and
thioredoxin peroxidase from F. hepatica [46]. In the latter case,
the enzyme is also responsible for inducing alternatively activated
macrophages [46].

Acetylcholinesterase (AChE) breaks down the neurotransmit-
ter acetylcholine in order to terminate neuronal signals, and is
active in the neuromuscular system of helminths. AChE has been
identified in the ES of many gut-dwelling nematodes, including
H. polygyrus [144], N. brasiliensis [145], the lungworm Dictyocaulus
viviparus [146], and adult B. malayi [147]. It has been proposed that
their secretion may also hydrolyse acetylcholine from the enteric
nervous system of the host [148]. Since acetylcholine-mediated sig-
nalling stimulates intestinal chloride and mucus production, AChEs
may prevent fluid increases in the gut that promote parasite clear-
ance. Finally, another N. brasiliensis secreted enzyme is platelet
activating factor (PAF) hydrolase, which is likely to act in an anti-
inflammatory capacity on the platelet population [149].

4.8. Venom allergen/ASP-like (VAL) homologues
In 1996, the Hotez laboratory described the A. caninum secreted
protein, ASP [68], the first of an enigmatic gene family expressed
across a wide variety of parasitic helminths, including human hook-
worm [150] filarial nematodes [30,151], trichostrongylids such as
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ig. 2. Mechanisms of immune modulation by helminth ES products (in bold) an
resenting cell; ASP, Ancylostoma secreted protein; BES, B. malayi ES; CPI, cystein
chistosome eggs; L-NES, larval N. brasiliensis ES; MIF, macrophage migration inhibi
ansoni; SPN, serine proteinase inhibitor (serpin); TLR, toll-like receptor; TGF, tran

. contortus [77,78], schistosomes [28,41,152], as well as free-living
. elegans [153]. We have termed this the Venom allergen/ASP-Like
VAL) gene family [151]. Alongside mammalian cysteine-rich sperm
roteins (CRISPs), insect venom allergens and plant pathogene-
is family-1 (PR-1) proteins, VAL proteins are members of the SCP
sperm coating protein)-1 superfamily. Despite sequence similarity,
o coherent function for this protein family has been demonstrated.
n A. caninum SCP-1 protein, neutrophil inhibitory factor (NIF),
inds the host integrin CR3 (CD11b/CD18) and is able to inhibit
eutrophil function, including oxidative burst [154,155].

The crystal structure of N. americanus ASP-2 reveals a charge seg-
egation reminiscent of mammalian chemokines, suggesting that
his protein may be a ligand or antagonist for G-protein coupled
eceptors such as the chemokine receptors [156]. Consistent with
his prediction, Na-ASP-2 has recently been shown to induce neu-
rophil chemotaxis in vitro and in vivo [157], but it remains uncertain
f this is a widespread property of VAL homologues. An alternative
ossibility is that the SCP-1 domain provides a stable structural
ackbone, allowing the non-conserved regions of the different VAL
roteins to carry out numerous different roles [70]. Even if this were
he case, the prominence of VAL products in most helminth secre-
ions is highly suggestive of an important role in modifying host
mmunity.
.9. Novel proteins

Helminths secrete numerous products lacking discernable
equence similarity to known proteins. Examples include the filarial
LT-1 and ALT-2 proteins which are highly abundant in the infective
ned molecules (in plain type) discussed in the text. Abbreviations: APC, antigen
teinase inhibitor (cystatin); HES, H. polygyrus ES; IPSE, IL-4-inducing principle of
ctor; NES, adult N. brasiliensis ES; NIF, neutrophil inhibitory factor; Sm, Schistosoma
ing growth factor; TES, T. canis ES.

larval stage [158,159]. One route to determine the function of these
proteins has been by heterologous expression in Leishmania para-
sites, studying changes in immune responsiveness resulting from
filarial gene expression. L. mexicana parasites expressing B. malayi
ALT-1 or ALT-2 were found to reach significantly higher levels of
infection in macrophages in vitro, inhibiting killing mechanisms,
and were more virulent in vivo [160]. Cells harboring transgenic
parasites upregulated SOCS-1, an inhibitor of IFN-� signalling, sug-
gesting that the ALT proteins impair Th1 responsiveness known to
be required for immunity in this system [160].

A B. malayi polyprotein “ladder” gp15/400 represents another
unusual filarial immunomodulator. Adults synthesise this protein
as a large 400-kDa precursor, subsequently processed into secreted
15-kDa subunits [161]. Released subunits can bind host retinoids
[162], a property that may be shared with another family of secreted
proteins, the transthyretin-like proteins [29]. Given that retinoic
acid can synergise with TGF-� to induce Foxp3+ Tregs [163], it is
possible that such proteins could enhance vitamin A uptake by
host tissues to favour conversion to RA and thus enhance Foxp3+

Treg induction. The homologue of gp15/400 from Dirofilaria immi-
tis, a filarial worm of dogs, stimulates mouse B cell synthesis of IgE
through direct binding to CD40 [164] and can also inhibit insulin-
dependent diabetes in mice [165].
5. Conclusion

The systematic analysis of ES products, which has become
possible through the combination of proteomics and genomics,
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s now providing us with a comprehensive catalogue of poten-
ial immunomodulators, each pointing the way towards critical
nteractions between parasites and the host immune system
Fig. 2). Many parasites have targeted similar host pathways,
articularly within innate immunity, but the detailed mecha-
isms differ because each helminth species has evolved its own
trategy to confound host defences. Identification of these spe-
ific mechanisms may allow the development of neutralising
accines that promote worm clearance. Moreover, the striking pro-
ective effect of helminth infections, in many contexts, against
mmunopathological disorders [9,115,166], and the introduction
f therapeutic helminth infections [8], sets an urgent agenda to
eplace live parasite therapy with non-living parasite products.
he recent advances in ES are likely to have already identified
he candidates, and as we have described here, provided excit-
ng early data on the ability of these proteins to modulate host
mmunity.

ote added in proof

Bennuru et al. [170] have performed a comprehensive proteomic
nalysis of the ES proteins from L3, L3 to L4 moult, MF and adult B.
alayi, resulting in the identification of 852 proteins. This supports

he previous studies [29,30], and additionally shows the abun-
ant secretion of ALT family members by larval parasites, as well
s the release of trace amounts of Wolbachia endosymbiont pro-
eins. Robinson et al. [171] have also made available an in-depth
roteomic analysis of the F. hepatica secretome based on new tran-
criptomic data.
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